Journal of Liaoning Petrochemical University
  Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Synthesis and Characterization of Capric Acid⁃Lauric Acid/Expanded Vermiculite as a Phase Change Composite for Energy Efficiency of Buildings
Xianghui Li, Songyang Liu, Ruixue Bai, Jiahui Zhang, Jianan Dai
Abstract198)   HTML5)    PDF (2295KB)(91)      

In this paper, a kind of composite phase change material (capric?lauric acid/expanded vermiculite) using expanded vermiculite as the matrix and capric?lauric acid binary eutectic as the adsorbent was fabricated by vacuum impregnation technology. The chemical compatibility, morphology, stability,thermal?physical properties and reliability of the prepared composite capric?lauric acid/expanded vermiculite were investigated by fourier transform infrared spectrum (FT?IR), scanning electronic microscope (SEM), thermal gravimetric analyzer (TGA), differential scanning calorimeter (DSC) and thermal cycling test. The melting and solidification phase transition temperatures of capric?lauric acid/expanded vermiculite are 18.42 ℃ and 17.51 ℃, respectively. The latent heat of melting and solidification phase transition are 66.9 J/g and 62.9 J/g, respectively. Besides, the encapsulation amount of capric?lauric acid in expanded vermiculite can reach 52.97%, and it has good thermal stability between working temperature. Moreover, the capric?lauric acid/expanded vermiculite was used to substitute for a certain proportion of fine sand to prepare thermal storage mortar, the mechanical and thermal performance of capric?lauric acid/expanded vermiculite?based mortar was evaluated. The test result shows that prepared capric?lauric acid/expanded vermiculite?based thermal storage mortar is a potential material for building heat regulation and energy saving.

2023, 43 (3): 34-40. DOI: 10.12422/j.issn.1672-6952.2023.03.006